This function calculates deepest regression estimator for simple regression.
deepReg2d(x, y)
x | Independent variable. |
---|---|
y | Dependent variable. |
Function originates from an original algorithm proposed by Rousseeuw and Hubert. Let Zn=(x1,y1),...,(xn,yn)⊂Rd denotes a sample considered from a following semiparametric model: yl=a0+a1x1l+...+a(d−1)lx(d−1)l+εl,l=1,...,n, we calculate a depth of a fit α=(a0,...,ad−1) as RD(α,Zn)=u≠0min♯l:rl(α)uTxl<0,l=1,...,n, where r(⋅) denotes the regression residual, α=(a0,...,ad−1), uTxl≠0. The deepest regression estimator
DR(α,Zn) is defined as DR(α,Zn)=α≠0argmaxRD(α,Zn)
Rousseeuw J.P., Hubert M. (1998), Regression Depth, Journal of The American Statistical Association, vol.94.
# EXAMPLE 2 data(under5.mort) data(inf.mort) data(maesles.imm) data2011 <- na.omit( cbind(under5.mort[, 22], inf.mort[, 22], maesles.imm[, 22])) x <- data2011[, 3] y <- data2011[, 2] plot( x, y, cex = 1.2, ylab = "infant mortality rate per 1000 live birth", xlab = "against masles immunized percentage", main = "Projection Depth Trimmed vs. LS regressions" )